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Abstract—Today, programmers benefit immensely from Integrated Development Environments (IDEs), where errors are highlighted

within seconds of their introduction. Yet, designers rarely benefit from such an instant feedback in modeling tools. This paper focuses

on the refinement of UML-style class models with instant feedback on correctness. Following the Model-Driven Architecture (MDA)

paradigm, we strongly believe in the benefit of maintaining high-level and low-level models separately to 1) document the lower level

model and 2) continuously ensure the correctness of the low-level model during later evolution (i.e., high- or low-level models may be

evolved independently). However, currently the refinement and subsequent evolution lack automated support, let alone an instant

feedback on their correctness (i.e., consistency). Traditional approaches to consistency checking fail here because of the

computational cost of comparing class models. Our proposed instant approach first transforms the low-level model into an intermediate

model that is then easier comparable with the high-level model. The key to computational scalability is the separation of transformation

and comparison so that each can react optimally to changes—changes that could happen concurrently in both the high- and low-level

class models. We evaluate our approach on eight third-party design models. The empirical data show that the separation of

transformation and comparison results in a 6 to 11-fold performance gain and a ninefold reduction in producing irrelevant feedback.

While this work emphasizes the refinement of class models, we do believe that the concepts are more generally applicable to other

kinds of modeling languages, where transformation and subsequent comparison are computationally expensive.

Index Terms—Class models, consistency checking, refinement, separation of concerns, and UML.

Ç

1 INTRODUCTION

CLASS models, an integral part of the Unified Modeling
Language (UML) [1], describe the structure of a

software system and do so very effectively at any level of
abstraction. During the early phases of software develop-
ment, class models are used to capture a software system
from a high-level perspective, showing the most significant
components. Later on, lower level details are added by
refining high-level classes and their relationships [2].
However, a low-level class model is only a correct
refinement of a high-level class model if the added details
do not change its meaning [3]. This is especially then
desirable when high-level models have desirable properties
(i.e., were validated against/for deadlock, performance,
security) and engineers like to ensure that the lower level
models correctly implement these properties; or if high-
level models are retained in addition to lower level models
for documentation and ease of understanding. Following
the MDA paradigm, we, therefore, strongly believe in the
need to maintain high-level and low-level models sepa-
rately (i.e., to not discard the high-level model after

refinement) to 1) document the lower level model and
2) continuously ensure the correctness of the lower level
models even after the initial refinement. Unfortunately,
when high- and low-level class models are evolved
separately, they can easily get out of sync—we speak of
inconsistencies [4]. This work is, thus, about helping
engineers understand how changes in class models affect
the correctness of their abstractions/refinements—irrespec-
tive of whether the high-level model was created first or not
(top-down or bottom-up engineering).

The lack of automated support implies that such
inconsistencies are often discovered later in the software
life cycle (if at all) when they become increasingly costly to
fix [5]. This is in contrast to a new trend in many modern
Integrated Development Environments (IDEs), which in-
form programmers of errors within seconds of introducing
them. Programmers benefit tremendously from such an
instant feedback and we believe that designers would
likewise benefit from such an instant design feedback—in
our case, to continuously ensure the correct refinement of
class models, if so desired. It is the engineers’ decision when
and how to resolve inconsistencies (i.e., tolerating incon-
sistencies [6], [7]). However, tolerating inconsistencies does
not imply ignoring them—hence the need for quick,
automated feedback in a nonintrusive manner.

Literature provides many approaches for identifying
inconsistencies in design models [8], [9], [10]. These
approaches usually require consistency rules (formal con-
straints) against which the design models are evaluated. In
[11], we demonstrated that consistency checking can be
implemented efficiently for many kinds of consistency
rules. We also implemented such a consistency checking
approach, called Integrated Abstraction and Comparison
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(IAC), for ensuring the consistency among high-level and
low-level class models. This approach, based on a known
class abstraction technique [12], [13], embodies a large
number of abstraction productions, where each abstraction
production replaces two relationships and a class (e.g., A
calls B and B calls C) with a transitive relationship (e.g., A
calls C). The consistency checker benefits from these
abstraction productions in that the rules first simplify the
low-level class model (usually through multiple abstraction
productions applied in sequence) and then compare the
final abstraction result with the high-level class model.

However, we found that the IAC approach had severe
scalability problems. These problems puzzled us and, while
investigating it, we realized that most of the abstraction
work performed was unnecessary. That is, different
consistency rules reevaluated the same intermediate ab-
straction productions—a duplication that could not easily
be avoided because of the independent nature of consis-
tency rules. The dilemma of the IAC approach was that it
combined two activities that did not fit well together: 1) the
abstraction of the low-level model and 2) its comparison
with the high-level model. Since our consistency rules were
written such that comparison dictated the use of abstraction
productions, we were no longer able to distinguish
between them. It should be noted that this performance
problem was not the result of our inability to “tweak” the
consistency rules to react differently to certain kinds of
changes. Such tweaking would have been possible and
would have resulted in better performance; however, it
would have been complicated, error prone, and it would
not have eliminated the real problem.

We, therefore, searched for a new way for dealing with
the correct refinement of class structures—a way that
separated the use of abstraction from comparison [14]; and
we developed a second tool, called Separated Abstraction
and Comparison (SAC). In SAC, both abstraction and
comparison had their own rules and were invoked sepa-
rately in ways that were ideal for them individually without
considering the needs of the other (separation of concerns).
Only an ordering was imposed in that abstraction always
had to happen before comparison such that comparison
could trust the correctness of the abstraction results. The
SAC approach, thus, remembered and made use of previous
abstraction results (through an intermediate class model)
and consequently avoided unnecessary abstractions.

This paper demonstrates that this separation of concerns
is highly beneficial for the consistency checking of software
models as follows:

1. We observed a 6 to 11-fold performance improve-
ment over the IAC approach evaluated on the same
third-party models.

2. The SAC rules were much easier to write and
evaluate due to the separation of concerns.

3. SAC was more memory efficient.
4. SAC produced less irrelevant feedback because it

abstracted and compared significantly less than IAC.
Of course, SAC was as reliable as IAC in terms of
correctness and completeness.

This paper, thus, contributes an approach to the consistency
checking among different levels of class models that is significantly

better than that of traditional consistency checking. While this
paper focuses on the correct refinement of class models, our
approach may equally be applicable in other situations,
where consistency checking is expensive. Our approach
could also be used to sync class models and source code
since the source code could be represented as a low-level
class model.

This paper is organized as follows: Section 2 discusses
related work. Section 3 presents the definition of consistency
followed by some related information about SAC/IAC. We
fully discuss the IAC and SAC approaches in Section 4.
Section 5 evaluates both IAC and SAC in terms of time,
memory cost, and accuracy. We draw a final conclusion in
Section 6. Note that this work is based on a previously
published abstraction technique [12], [13], [15]. The incre-
mental implementation of this abstraction technique, as used
in SAC, was published in [16]. Neither IAC nor SAC were
published previously although IAC is conceptually alike
traditional approaches to consistency checking [10], [11],
[17]. A batch version of IAC appeared in [14], though it has
little resemblance with IAC because much of the complexity
of IAC is about its ability to react to model changes.

2 RELATED WORK

Various approaches aimed at finding inconsistencies in
UML models have been presented in the literature. We will
discuss these related approaches by means of three criteria.

The first criterion is the distinction between vertical and
horizontal consistency checking [18]. Vertical consistency
checking is meant to compare models at different levels of
abstraction. Horizontal consistency checking is meant to
compare various models at the same level of abstraction.
Existing work for vertical consistency checking usually
supports some refinement relationship as is discussed in
this paper. There exist some approaches, which directly
support class structure refinement. Lieberherr et al. [19]
define a set of transformations, which captures class
evolution. These transformations can then be applied to
find inconsistencies between two class models at different
levels of abstraction. Whittle [20] proposes a set of
transformation rules investigating the consistency relation-
ship between two class models at different levels. Shen and
Low [21] discuss how to apply a profile mechanism to
represent refinement rules based on different levels of class
models. However, our approach goes beyond the batch
abstraction of entire class structures and focuses on
incremental abstraction and comparison to ensure instant
feedback on correctness during refinement. Not restricted to
class models is the approach by Berenbach [22]. There,
models designed at different phases, such as analysis and
design, are compared. Berenbach also presents heuristics
and processes to create verifiable UML analysis and design
models. Based on a set of heuristics, various analysis and
design models can be compared to find inconsistencies.

Most existing work on consistency checking, however,
focuses on horizontal consistency checking, which ensures
the consistency among different models at the same level of
abstraction (typically class, sequence, or statechart models).
Tsiolakis and Ehrig [23] propose a method for finding
inconsistencies among UML class models, use case diagrams,
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sequence diagrams, and statechart diagrams. Engels et al.
[24] detect inconsistencies between a class diagram and
statechart diagram. Straeten et al. [25] investigate incon-
sistencies among UML class diagrams, sequence diagrams,
and statechart diagrams. These horizontal consistency
checking approaches, however, benefit from much simpler
consistency rules, where the role of transformation is limited
to data gathering and simple manipulation. Horizontal
consistency checking can, thus, be expressed in numerous
albeit simple consistency rules.

How the consistency checking approaches are imple-
mented is the second criterion to divide the existing
approaches. Many approaches rely on formal methods
[26] as a platform for consistency checking. The most
widely used formal methods include CSP [27], B [28], Z [29],
and Description Logic [30]. The advantage of these formal
methods is that they provide a precise semantics to UML
diagrams. Consistency rules can thus be defined precisely.
Rasch and Wehrheim [31] consider the inconsistencies
between a class and its associated state machine. They
combine Object-Z and CSP to describe the static and
dynamic aspects of a software system and inconsistencies
can then be found by the FDR model checker [32]. Similar to
Rasch and Wehrheim’s work, Yeung [33] also considers the
inconsistency problem between a UML class and its state
machine. However, Yeung applies CSP and B to formalize
the static and dynamic aspects of a UML model. Finally,
Treharne and Schneider’s coupling [34] between CSP and B
is employed to find inconsistencies. Finkelstein et al. [35]
apply graph rewriting to translate statechart and sequence/
activity diagrams into Petri Nets to find inconsistencies.
Nentwich et al. [10] implement a tool called xLinkIt that
detects inconsistencies among multiple, distributed XML
models. Yao and Shatz [36] apply an Extended Colored
Petri Net to check inconsistencies in the dynamic aspect of a
UML model. Wagner et al. [37] apply graph grammars to
find inconsistencies in UML models. There, a graph
rewriting system searches for inconsistency patterns; and
if a match is found, then an inconsistency is reported.

In some way, our approach is similar to these approaches
because they separate transformation from comparison.
That is, they transform the UML model into a different,
usually formal, language to simplify the comparison there
because the transformation unifies the language(s) used in
the different models. However, our approach does not use
transformation for the sake of unifying class models. Also,
our goal is not to provide a better formal foundation for
comparison but rather to separate transformation from
comparison to optimize them individually.

How the feedback on inconsistencies is produced is
another criterion to distinguish the current approaches.
Almost all existing approaches implement consistency
checking in a batch way. This is very inefficient because
most model changes are small but then require complete
consistency reevaluations. There are, however, a few
noteworthy exceptions. The tool xLinkIt proposed by
Nentwich et al. [10] provides an incremental way to finding
inconsistencies among UML diagrams. They did this by
parsing the consistency rules to infer how they are affected
by model changes. xLinkIt is, thus, restricted to a simple

language for writing consistency rules—though a language
that is adequate in many situations. However, xLinkIt
cannot handle the rather complex abstraction productions
needed for maintaining consistency among multilevel class
models. Wagner et al. [37] provide another approach to
incremental consistency checking. They establish relation-
ships between a model change and a consistency rule. Once
a change is caught, the tool can recheck the associated rule
to find inconsistencies caused by the change. However, the
approach requires a correct and complete list of how
changes affect consistency rules—this approach is, thus,
only really usable for simple consistency rules. Our
approach does require knowledge on how high-level and
low-level classes are related but it does not require
knowledge on how changes affect consistency rules.
Furthermore, our approach maintains knowledge of pre-
vious transformations (abstracted low-level class models
are not discarded but incrementally updated).

3 BACKGROUND

In the first Section 3.1, we introduce the consistency
requirements that we will apply throughout this paper
and then apply a simple hotel example to illustrate how
consistency checking is performed. In the Section 3.2, we
briefly introduce the rules that will be used to support class
abstraction.

3.1 Consistency for Class Model Refinement and an
Example

In order to demonstrate the consistency problem for class
model refinement, we use an illustrative example in the
remainder of this paper. The example is based on a
simplified hotel management system (HMS) taken from
[12], where an engineer describes the system via two class
models at different levels of abstraction. The purpose of the
HMS is to provide support for hotel reservations, check-in/
check-out procedures, and associated financial transactions.

Imagine that the engineer first concentrates on the class
model at a high level of abstraction. In that context, a guest
may have a reservation at a hotel or stay there, and the
guest may have expense and payment transactions asso-
ciated with such reservations and/or stays. This simple,
high-level class structure is shown in Fig. 1 (top). Over time,
the engineer may find it necessary to add more details to the
class model. The result is the second class model, shown in
Fig. 1 (bottom), which depicts a refinement of the first one.
In the second class model, a guest was defined to be a
person (inheritance) and every person was assigned an
account—an account that supports transactions such as
payments or expenses. Moreover, Room and Reservation
classes were added to better define the difference between
reservations and room occupancy.

Today, engineers often refine a high-level class model by
adding lower level details—hence, overwriting the high-
level model. Unfortunately, engineers then lose the higher
level model—a model that is not only easier to understand
(i.e., for later maintenance or training) but might also have
been used to validate desirable properties (i.e., deadlock,
performance, security) and the correct and complete
implementation of requirements. It is, thus, beneficial to
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maintain high-level class models (HCMs) and low-level
class models (LCMs) separately. However, doing so is only
then useful if these class models remain consistent over
time. Two class models at different levels of abstraction are
said to be consistent if the following consistency require-
ments are satisfied:

. Every low-level class (abbreviated as LCM class)
refines at most one high-level class (abbreviated as
HCM class): ensures that a low-level class refines
one and only one high-level class.

. Every high-level class has at least one low-level
class, which refines the high-level class: ensures that
every high-level class is refined.

. The group of relationships between any two high-
level classes must be identical with the group of
relationships between their corresponding low-level
classes: ensures the same interactions among low-
level classes and high-level classes.

We must also introduce the representation of the
refinement relationship in our approach. While name
similarity of classes at the different levels of abstraction
may imply a refinement relationship, engineers can also
choose classes with different names. Thus, we use an explicit
trace dependency to show the refinement relationship
between a high-level class and a low-level class. In Fig. 1,
trace dependencies are indicated as dashed lines.

The first requirement checks whether a low-level class
refines at most one high-level class. An LCM class traced by
a high-level class is called an important class; otherwise, an
LCM class without any trace relationship is called a helper
class. In Fig. 1, important classes are accentuated with
circles—note that each important LCM class refines one
high-level class only. Since every LCM class refines at most
one HCM class, we say that the class models in Fig. 1 satisfy
the first requirement.

The second requirement checks whether all HCM classes
have an LCM class that refines them, respectively (com-
pleteness). This requirement also allows multiple LCM

classes to refine an HCM class [13], however, this issue is
not discussed further since the aggregation of multiple
LCM classes into a single HCM class is not computationally
expensive. Revisiting the example, we thus validate
whether the four HCM classes Hotel, Guest, Expense, and
Payment in Fig. 1 have a corresponding low-level class. It is
easy for readers to see that each of these four HCM classes
is refined by at least one low-level class, respectively, via
the trace dependency.

The third requirement checks the similarity of the
relationships among the classes. To do this, we need to
see whether the relationships among the important LCM
classes are equivalent to the relationships among their
corresponding HCM classes. This is rather complex because
relationships among important LCM classes are obscured
through the presence of helper LCM classes. For example,
the HCM defines that a Guest can make Payments whereas
the LCM defines that a Guest is a Person who is allowed to
make Transactions of which one kind of transaction is a
Payment. So, are these two statements equivalent?

To ensure requirement 3, we, thus, need to find the
derived relationships between any two important classes
and these derived relationships should reflect the meaning
of the path of helper classes between the two important
classes. In order to achieve this, we apply abstraction
productions, which will be discussed below. After the
abstraction, we compare whether the two groups of
relationships are identical. Two groups of relationships
are identical if both groups have the same number of
relationships and each relationship is structurally equiva-
lent to one in the other group. In this paper, we focus on the
type and direction of a relationship only. In [12], [13], we
demonstrated that we can handle other properties as well
(e.g., multiplicity).

The validation of the third requirement is not trivial and
it is also the most expensive one to compute. For example,
when we consider whether the class models in Fig. 1 satisfy
requirement 3, we first need to derive all transitive
relationships among the important classes Hotel, Guest,
Payment, and Expense. After that, we need to compare
whether the group of relationships between any two high-
level classes is identical to the group of derived relation-
ships between their corresponding low-level classes. For
instance, we compare the group of relationships between
high-level classes Hotel and Guest with the group of derived
relationships between low-level classes Hotel and Guest.

Doing this abstraction and comparison on small class
models is not hard. However, when class models include
hundreds of classes and relationships, it is virtually
impossible for humans to identify and track all incon-
sistencies [11]. Thus, a tool-based automatic support would
be of great help to engineers.

There are a few additional consistency requirements that
pertain to the specific properties of classes and relation-
ships, but these are too distracting to consider here and are
omitted. Obviously, our approach requires the existence of
at least two levels of class models—although more than two
may exist. The approach does not require any level to be
guaranteed correct. Instead, the levels are compared
pairwise to identify inconsistencies. It is the engineers’ task
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to create and maintain class models and resolve incon-
sistencies. While we help the engineer identify inconsisten-
cies quickly, we do not impose any constraints on when or
how to resolve those inconsistencies [38], [39].

Our approach to consistency checking of class models is
rule based in order to ensure correctness [12]. In a rule-
based approach, every rule is instantiated by a collection
of rule instances, whose existence is decided by the
instances’ respective root element. Additionally, every rule
instance is associated with a change impact scope, which
defines all model elements that potentially affect the
validity of a rule instance—and, thus, the consistency
between the two class models.

There are two kinds of rules in our approach. One kind
of rules is called consistency rules, which directly support a
consistency requirement. The other kind of rules is called
action rules, which are responsible for the maintenance of
the intermediate, abstracted class models. For example, in
Fig. 1, an action rule creates an association between LCM
classes Guest and Hotel because the path between these two
classes via class Reservation is abstractable via an abstraction
production (discussed below). Action rules thus support
consistency rules by helping maintain the abstract-level
class model (ACM) consistent with the LCM to subse-
quently simplify the comparison between the ACM and
HCM. Two class models at different levels of abstraction are
then consistent if all consistency rules return true. Central to
our rule-based approach is how to maintain change impact
scopes to minimize the computational overhead. Details
about rules, rule instances, and their change impact scopes
will be further illustrated in the following text.

3.2 Abstraction Technique

As stated in the previous section, validating the third
requirement is the most (computationally) expensive part of
our consistency checking approach. This part relies exten-
sively on abstraction. Abstraction is the process of simplify-
ing a given class model by hiding details. However,
abstraction is not about omitting model elements. If details
of no interest were omitted, then the abstracted class model
would be incomplete. Abstraction productions are needed
to reinterpret the hidden information such that the
abstracted class model summarizes their effect. For exam-
ple, we know from Fig. 1 that Hotel, Guest, Payment, and
Expense are the important classes of the LCM because these
are the ones singled out in the HCM (through trace
dependencies). Classes such as Room and Person are helper
classes that are not depicted in the HCM. However, the
helper classes are implied there—for example, the class
Room is implied in the high-level relationship stays_at.

Our abstraction technique reinterprets the helper classes
and their relationships based on a set of abstraction
productions [12]. We apply a previously developed abstrac-
tion technique built together with IBM Rational. The
technique takes an arbitrary complex class structure and
derives so-called transitive relationships among its classes.
A transitive relationship is the result of combining a
collection of relationships via abstraction productions.
Consequently, a transitive relationship is the semantic
equivalent of a collection of existing relationships. For

example, if A has an association to B and B has an
association to C, then, transitively, A has an association to C.

By composing the properties of a collection of direct
relationships, one can infer properties of the transitive
relationship. Properties of relationships include the direc-
tion and type of a relationship or the cardinality of
association ends. Fig. 2a shows three abstraction produc-
tions out of the set of 121 productions defined in [12]. For
instance, production 4 states that if A inherits from B and B
calls C (input pattern), then, transitively, A calls C (output
pattern). Or production 70 states that if A calls B and C is a
part of B (diamond head), then, transitively, A calls C.

The abstraction rules were validated in [12] on 12 models
with model sizes of up to several hundred classes. It was
shown that the abstraction rules prevent false negatives
(FN) but not false positives (FP). The lack of an abstraction
thus truly means that no abstraction exists. However, not all
abstracted paths do exist. That is, calling relationships
among classes are typically conditional which makes
understanding transitive relationships more complicated.
Imagine that A calls B under a certain condition only, say, if
variable x is true; and imagine that B calls C under the
condition that x is false. In this case, A can never call C even
though there is a transitive relationship from A to C. UML
class models typically are not rich enough to understand
conditions under which calls happen. As such, abstraction
rules may err on the side of identifying calling relationships
that are in fact wrong (false positives). In previous work, we
found this error to be small with 4 percent of abstracted
relationships only.

The abstraction productions are simple in nature. They
describe a collection of two input relationships that are
composable into a single output relationship (or not
composable if the output pattern does not have a relation-
ship). What makes the abstraction technique powerful is the
large number of productions (121 productions for three
types of class relationships and various properties). As
input, the abstraction technique takes an arbitrary complex
class structure and a list of important classes. The list of
important classes emphasizes the classes that should not be
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hidden. In Fig. 2a, classes A and C are important and the
class B is not (i.e., the helper class) as it gets replaced
together with its relationships by a transitive relationship.

Fig. 2b shows the use of transitive reasoning in under-
standing the relationship between the important classes
Guest and Payment (from Fig. 1). Although the two
important classes are not directly related to one another, a
transitive relationship can be derived by eliminating the
helper classes Person, Account, and Transaction. Fig. 2b
shows that the application of production 4 eliminates the
class Person, the subsequent application of production 70
eliminates the class Account, and, finally, the application of
production 28 eliminates the call to Transaction. This
technique uses abstraction productions incrementally to
eliminate multiple helper classes. The final abstraction
shows a single relationship between Guest and Payment that
is semantically equivalent to the path of the helper classes.
There are also productions such as those dealing with
relationship properties like cardinalities. We ignore these
productions in this paper for brevity. For more details, refer
to [12]. We also ignore those productions that deal with the
composition of multiple low-level classes into high-level
classes because these productions are not computationally
expensive [13].

4 SUPPORTING CLASS MODEL REFINEMENT

For simplicity, we concentrate on the correct refinement
between two class models only—a single HCM and LCM.
Dealing with the refinement of multilevel class structures is
simply the concatenation of dealing with the refinement of
any two adjacent levels. As was discussed above, the first
two consistency requirements are easy to check while the
third requirement requires the most computation during

consistency checking. Thus, the validation of the third

requirement will be the main issue in this paper. In

principle, when an engineer changes a class model (either

the high-level or the low-level one), the abstraction

technique takes the LCM, computes an abstract class model

(ACM) from the LCM, and compares the ACM with the

HCM. Differences between the abstracted class model and

the HCM indicate incorrectness/inconsistency. If this

incorrectness did not exist beforehand, then it was

introduced by the latest change.
Fig. 3 illustrates the impact of a change to a simple

relationship in the LCM. There, the engineer changes the

relationship between classes Guest and Reservation such that

the calling direction is now bidirectional instead of

unidirectional (see the arrowhead in the bottom model).

To check whether this change causes an inconsistency, we

first abstract the LCM and then compare the abstracted

class model (ACM; top-left) with the HCM (top-right). It is

then easy to see that the change causes an inconsistency

because the derived relationship between LCM classes

Guest and Hotel via Reservation is bidirectional while the

corresponding relationships between the HCM classes

Guest and Hotel are unidirectional.
Of course, the impact of a change differs with the type of

change. We distinguish three major types of changes that

include six different events as follows:

. The LCM changes (e.g., add/remove classes or
relationships).

. The HCM changes (e.g., add/remove classes or
relationships).

. The traceability changes (e.g., add/remove trace
dependencies between HCM and LCM).
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In principle, the abstraction-based approach to consis-
tency checking could handle any of these events by
reabstracting an LCM with the latest data. Doing so in its
entirety is, however, not scalable as is discussed next.

4.1 Problem

Although the abstraction technique is reasonably scalable
(see empirical studies in [12]), it is not instant, and thus, not
able to keep up with an engineer’s rate of model changes in
real time. To compare the HCM with the LCM, a batch
abstraction would have to explore and abstract all paths
among all important classes. Table 1 shows the complexities
of batch abstraction in terms of time and the number of paths
explored. A model size is given as the sum of the LCM and
HCM in the model. Here, we observed abstraction times of up
to 27 seconds (with an average of 7.6 seconds, evaluated on a
Dell computer with a 2.0 GHz CPU and 512 MB memory) for
the eight sample models. These times are not unreasonable
for occasional abstraction and consistency checking, but are
not practical for instant use.

The obvious solution to our performance problem is to
build an approach for incremental consistency checking.
Instead of reabstracting the entire LCM anew with the latest
change, incremental consistency checking only abstracts
and compares a portion of the LCM. For the portion that we
neither abstract nor compare, we must also demonstrate
that the three requirements remain unchanged. The
reevaluated portion should be as small as possible, but it
must be big enough to adequately cover the impact of all
possible changes.

4.2 Integrated Abstraction/Comparison (IAC)

To support incremental abstraction followed by necessary
comparison, we initially implemented a tool that integrated
incremental abstraction and incremental comparison (IAC).
IAC performs a limited-scoped abstraction on demand after
a design change and then compares the results with the
HCM. IAC is implemented in an incremental fashion by
instantiating rules based on relevant model elements. The
following discusses how the three consistency requirements
are implemented by three consistency rules in IAC.

Requirement 1: Every low-level class refines at most

one high-level class.
Rule1IAC is implemented to directly support require-

ment 1. Since requirement 1 is interested in every low-level

class, Rule1IAC is instantiated for every LCM class. Each
rule instance evaluates separately whether its LCM class
has a trace dependency to at most one HCM class. The root
elements of instances of Rule1IAC are LCM classes because
rule instances need to be created and destroyed as LCM
classes are created and destroyed, respectively.

Each rule instance returns a Boolean value that reflects
whether the root element satisfies the requirement or not. In
order to support incremental consistency checking, each
rule instance also has a scope, which contains all model
elements that might change the validity of the rule instance.
The reevaluation of a rule instance is necessary only if one
or more of the model elements inside its scope change. In
general, the change impact scope of a Rule1IAC instance
contains its root element, an LCM class. It may also contain
its trace dependency and the HCM class if the root element
is an important class. Also refer to [11] for further details on
rule instances and their scopes.

For example, in Fig. 1, we create an instance ofRule1IAC for
the low-level class Hotel, denoted by Rule1IAC < Hotel > .
The rule instance Rule1IAC < Hotel > is created when class
Hotel is created and the instance is destroyed when class Hotel
is destroyed. Since there is a trace relationship between the
high-level class Hotel and the low-level class Hotel, the change
impact scope of the instance Rule1IAC < Hotel > includes
three elements: the high-level class Hotel, the low-level class
Hotel, and the trace dependency connecting these two classes.
Once one of the elements is changed, such as the deletion of
the trace, the instance Rule1IAC < Hotel > must be reeval-
uated to check whether the requirement is still satisfied. In
[11], we demonstrated that this approach to incremental
consistency checking is quite scalable for many kinds of
consistency rules.

The evaluation of rule instances follows an automated,
two-step process. The first step finds out whether new rule
instances should be created and whether existing rule
instances should be reevaluated (selection step). The second
step evaluates all selected rule instances (evaluation step).
We separate selection from evaluation because model
changes made by engineers typically come in batches. For
example, the deletion of the LCM class Y in Fig. 4 also
causes the deletion of all its relationships (to X and Z).
There are at least three changes caused by this single user
action. By separating selection from evaluation, it is ensured
that rule instances are reevaluated exactly once—thus,
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saving computational effort. This separation also has the
advantage that the rule instances could be evaluated in a
different order than selected (this feature will become
important later).

Requirement 2: Every high-level class has exactly one
low-level class that refines the high-level class.
Rule2IAC realizes requirement 2 in IAC. This rule ensures

that every HCM class has a trace dependency to exactly one
LCM class. We chose an HCM class as the root element of
an instance of Rule2IAC . Thus, Rule2IAC instances are
created and destroyed according to the existence of HCM
classes. After a rule instance is created, it is responsible for
evaluating whether requirement 2 is satisfied or not by the
root element.

There are four HCM classes in Fig. 1. So, Rule2IAC is
instantiated four times—once for every high-level class—and
all four instances are validated initially to ensure consistency.
For instance, Rule2IAC instantiated on HCM class Hotel (in
short, Rule2IAC < Hotel > ) returns true because HCM class
Hotel indeed has a trace to at least one LCM class.

The change impact scope of a Rule2IAC instance includes
the HCM class, the corresponding LCM class, as well as
their trace dependency if the HCM class was refined. Thus,
the change impact scope of Rule2IAC < Hotel > is the same
as the scope of Rule1IAC < Hotel > in Fig. 1.

Requirement 3: The group of relationships between
any two high-level classes must be identical with the
group of derived relationships between their correspond-
ing important classes.

Starting from a high-level class, we can find its
neighbor classes by traversing the direct relationships
connecting to the high-level class. Let us first consider an
HCM class X. For X, the investigation of a group of
relationships between X and one of its neighbor HCM
classes, say Y, consists of two steps. One is to find the two
important classes corresponding to X and Y, and then
derive all transitive relationships between the two im-
portant classes. The second step is to compare the two
groups of relationships. Once the above two steps are
completed, we can conclude whether the group of
relationships between X and Y is identical with the group
of relationships between their corresponding important
classes. The algorithm that summarizes the above steps is
as follows:

for each HCM class X do {

for each X’s neighbor class Y do {

store all relationships between X and Y in set S

find the corresponding LCM classes for X and Y,

denoted by x and y

abstract all paths between x and y and store all

transitive relationships in set s

compare the two sets S and s to see whether they are

identical

}

}

We choose an HCM class as the root element for
Rule3IAC instances. Initially, our approach instantiates all
Rule3IAC instances and validates whether their root ele-
ments satisfy requirement 3. When a change to a model
element is caught, we only reevaluate those Rule3IAC
instances, where the validity of requirement 3 on their root
elements might be affected.

Now, it must be stressed that incremental abstraction is
expected to abstract the transitive relationships of the LCM
on demand. In other words, when Rule3IAC < X > is
evaluated, the rule instance investigates the relationships
between X and all its neighbor classes. The comparison,
thus, triggers the abstraction of all transitive relationships
between X’s corresponding LCM class and all X’s neigh-
bors’ corresponding important classes. Let us consider the
rule instance for the high-level class Hotel in Fig. 3.
Rule3IAC < Hotel > first finds all neighbor HCM classes
through the HCM relationships. The HCM class Hotel only
has one neighbor HCM class Guest. The rule instance then
identifies Hotel’s corresponding low-level, important class
by using the trace dependency. The important class is the
name-equivalent Hotel in the LCM. Starting from the LCM
class Hotel, the rule instance then searches and abstracts all
possible paths of relationships until it reaches the LCM
class Guest. Since there are two paths between the LCM
classes Guest and Hotel, both paths are abstracted separately
and the results are compared with the two HCM relation-
ships between the HCM classes Hotel and Guest. The rule
instance returns true only if the abstracted relationships are
identical with their corresponding HCM relationships.
However, Rule3IAC < Hotel > in Fig. 3 evaluates to false
because the transitive relationship from the LCM classes
Guest to Hotel via Reservation (the top-left of Fig. 3) is
bidirectional while both relationships in the HCM (the top-
right of Fig. 3) are unidirectional.

The change impact scope of Rule3IAC < Hotel > in-
cludes all model elements visited during the above
evaluation. So it contains the HCM classes Hotel, Guest,
and both of their relationships, the LCM classes Hotel, Room,
Reservation, Guest, and all of their relationships; and the two
trace dependencies. Fig. 5 depicts this impact scope for
Rule3IAC < Hotel > graphically (the darker shaded area).
A change to any element in this change impact scope results
in the reevaluation of Rule3IAC < Hotel > .

4.3 Observations of IAC

The implementation of Rule3IAC does not appear unrea-
sonable on first glance, but readers must keep in mind that
this is a small illustrative example only. Investigating paths
from an important class to all its neighbor important
classes is not cheap. Table 1 previously presented the cost
of batch abstraction. There, the average number of
investigated paths is 2,656. With an average of 136 explored
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paths per user action, the IAC implementation is certainly
an improvement over the batch abstraction presented
earlier. However, we found two reasons why IAC is
unnecessarily expensive:

1. The overlap of change impact scopes triggers
duplicate reabstractions.

There exist many rule instances whose change
impact scopes have some common elements. While
we conservatively add elements that might change the
validity of rule instances, the common elements in
different change impact scopes cause some paths to
get abstracted more than once—an unnecessary
burden. For example, in Fig. 5, the rule instance
Rule3IAC < Hotel > investigates all relationships
between high-level classes Hotel and Guest and
abstracts all paths between their corresponding
important classes. Similarly, the rule instance
Rule3IAC < Guest > investigates relationships from
Guest to all its neighbor classes. This includes the same
paths that are considered byRule3IAC < Hotel >plus
the ones from Guest to Payment and Expense (the
lighter shaded area in Fig. 5). Since the change impact
scope of Rule3IAC < Hotel > is a subset of that of
Rule3IAC < Guest > , a change to the relationship
between LCM classes Guest and Reservation, in the
darker shaded area in Fig. 5, causes not only the
reevaluation of Rule3IAC < Hotel > but also the
reevaluation of Rule3IAC < Guest > because this
relationship is in the scopes of both rule instances.
The paths between the low-level classes Hotel and
Guest are then abstracted twice.

2. Certain changes do not require reabstractions.
We also discovered some unnecessary abstrac-

tion related to the nature and impact of changes.

For example, if the HCM changes, say, one of the
relationships between HCM classes Guest and Hotel
in Fig. 5 is deleted, then the abstraction of the LCM
is not affected because the LCM did not change.
Yet, the IAC approach abstracts always. Likewise, if
a new relationship, say, from Guest to Hotel, is
added to the LCM, then more paths become
available. But, none of the existing paths between
Guest and Hotel are affected by this addition and so
there is no need to reabstract them. Yet, the IAC
approach does reabstract.

Perhaps one could tweak the implementation of
Rule3IAC such that it understands these conditions. How-
ever, this solution is dangerous. We have discovered in [40]
that augmenting incremental rules with “if” structures
results in a combinatorial state explosion problem. There
are simply too many changes and change combinations and
it is very hard to validate the correctness of the consistency
rules if they are tweaked—though it could be done. Also
such an “if” structure is harmful to the Open-Closed
Principle, which means that software entities should be
open for extension, but closed for modification [41].

While tweaks and hacks might solve this problem, the
fundamental issue is that we failed to recognize the
different needs of comparison and abstraction (the IAC
tool uses the same change impact scope to cover both).
Since the consistency rules tightly integrate abstraction and
comparison, they cannot be optimized independently of
one another.

4.4 Separated Abstraction/Comparison (SAC)

To counter the computational inefficiency of the IAC, we
investigated ways of separating abstraction from compar-
ison. For separation, we use an intermediate model, called
the abstract class model (ACM), such that abstraction
maintains the correctness of the ACM relative to the LCM
at all times and comparison ensures the correctness of the
ACM with respect to the HCM. HCM and LCM are no
longer compared directly and abstraction is no longer
invoked by comparison as in IAC, as shown in Fig. 6. To
compare this alternative approach to IAC, we developed
another tool, called SAC.

The use of an intermediate model to simplify consistency
checking is not new. Many existing approaches rely on
intermediate models for consistency checking. However,
thus far, intermediate models have been used solely 1) to
unify among the different modeling languages involved
([23], [24]) and 2) to provide a formal foundation for the
comparison rules ([43], [31], [33], [34]). In both cases,
intermediate models have drawbacks because:

. They add another modeling language in addition to
the ones already used.

. They cause discontinuity in that information has to
be transformed to them (to detect the error) and back
(to understand the error).

. They consume resources—memory and CPU.

However, the use of an intermediate model in SAC is
new because it has not been recognized that intermediate
models can serve as a foundation for separating incremental
transformation from incremental comparison—with highly
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beneficial results as are discussed below. Our use of an
intermediate model is also different from traditional
approaches because, here, the intermediate model is just
another class model—we do not introduce a new modeling
notation. Because of this reason, we do not cause (as much)
discontinuity because the intermediate model is under-
standable by an engineer. However, it does consume
memory. It should be noted that the use of an intermediate
model does not make it easier for an engineer to understand
inconsistencies when they happen. Both IAC and SAC can
visualize the HCM and LCM elements involved in incon-
sistencies (by using traceability information and scope
elements). SAC additionally can visualize the intermediate
model. However, in both cases, it is not obvious how to best
visualize this information to the engineer to support the
understanding and resolving of inconsistencies. This issue
is out of the scope of this paper.

Since the first two consistency requirements were
computationally cheap, we reimplemented Rule1SAC and
Rule2SAC similar to the corresponding rules in IAC. The
only difference is that Rule1SAC also maintains ACM
classes. We skip the discussion of requirements 1 and 2 to
concentrate on the problematic requirement 3.

The significant difference between IAC and SAC is the
introduction of an ACM. The comparison between two class
models at different levels, required for consistency checking,
is then divided into two kinds of rules. The abstraction rules
are responsible for reabstracting the LCM if it changes and the
comparison rules are responsible for comparing the ACM
and HCM. In our case, abstraction rules are further sub-
divided in order to separate the search for abstractable paths
from the maintenance of ACM relationships: If the LCM
changes, then an abstraction rule, called AbstractionSAC ,
searches and abstracts all affected paths connecting impor-
tant classes in the LCM (starting at the location of the change).
If the abstraction rule finds an abstractable path, then it adds a
transitive relationship to an ACM. A second rule, called
AbstractablePathSAC; then maintains these abstracted ACM
relationships. Finally, if the ACM or HCM changes, then a
third rule, called ComparisonSAC , compares HCM elements
with ACM elements for consistency. The first two rules are
action rules (for transformation) while the third one is a
consistency rule (for comparison). Note that an LCM change
only then leads to a comparison if it actually changes the

ACM, and an HCM change never leads to an abstraction. An
overview of supporting requirement 3 is given as follows:

for each change caught by SAC{

if the LCM changed then {

search and abstract the paths among the affected elements

// done by AbstractionRuleSAC
update the ACM if necessary

// done by AbstractablePathRuleSAC
}

if ACM or HCM changed then

compare the ACM and HCM

// done by ComparisonRuleSAC
}

The abstraction ruleAbstractionRuleSAC is responsible for
abstracting paths in an LCM. Unlike all the previous rules, we
apply the singleton pattern [42] to create only one instance of
AbstractionRuleSAC . The instance is created when SAC starts.
There are two tasks for this rule: 1) to search for abstractable
paths and 2) to abstract them when found. If the search finds
an abstractable, transitive path between two important
classes, a new relationship between their corresponding
ACM classes is added to the ACM. AbstractionRuleSAC also
creates an instance of AbstractablePathRuleSAC to maintain
the newly added relationship in the ACM (more detail will
follow later). AbstractionRuleSAC does not have a change
impact scope. Instead, it incrementally searches and abstracts
LCM classes and relationships starting at the location of the
change (we will see below that this rule is optimized by
understanding the change event, and thus, applying pre-
vious abstraction results in the ACM).

It is not always necessary for AbstractionRuleSAC to
explore paths in the LCM. The search for a new transitive
relationship is dependent on the type of change event. We
identified a total of six types of change events, three of
which can cause the creation of a transitive relationship
between two important classes.

The first type of event is adding a trace to a helper class
so that it is upgraded to an important class. In this case, the
search algorithm of AbstractionRuleSAC explores all paths
from the upgraded class to its neighbor important classes to
find whether new transitive relationships can be abstracted.
This search algorithm is exactly the same as the one used by
Rule3IAC . The pseudocode to deal with adding a trace to a
helper class is as follows:

if a change is adding a trace to a helper class x then

add x’ to ACM

for each class y which is a neighbor class of x{

search and abstract all paths leading to another

important class via class y in LCM

update relationships between y’ and other ACM classes

if abstractable paths found

}

For example, in Fig. 1, suppose that the LCM class Guest
was initially a helper class. If a trace is added to Guest, then
starting from the new important class Guest, the search
algorithm searches and abstracts all possible paths of
relationships until it reaches other important classes such
as Hotel, Payment, and Expense. The addition of a trace may,
thus, add an ACM class and relationships. It can also delete
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existing ACM relationships, which are discussed later
under AbstractablePathSAC .

The second type of event is deleting a trace. As a result,
an important class is downgraded to a helper class. In this
case, the search algorithm in AbstractionRuleSAC explores
all paths to find all transitive relationships between any two
important classes via the downgraded class. Actually, the
algorithm optimizes abstraction by utilizing the previous
abstraction results. Specifically, the algorithm only abstracts
those ACM relationships that end in the downgraded (i.e.,
now deleted) ACM class (done by Rule1SAC). The removal
of a trace, thus, eliminates an ACM class (and its relation-
ships) and may add new ACM relationships in its place.

if a change is deleting a trace between the LCM class y and an

HCM class then {

find the corresponding ACM class y’;

for any two neighbors x and z of y’ {

abstract the path between x and z via y’;

update relationships the ACM if necessary;

}

remove y’ from ACM;

}

For instance, for the LCM shown in the bottom of Fig. 3,
SAC produced an abstraction result, shown by the
abstracted class model in Fig. 3 (top-left), based on the
trace dependencies given in Fig. 1. If the trace connecting
class Guest is deleted, then the search algorithm in
AbstractionRuleSAC only abstracts any two relationships
affected by the deletion of Guest in the ACM. Specifically,
the search algorithm tries to abstract the relationship
between Expense and Guest and the relationship between
Payment and Guest in the ACM (the top-left of Fig. 3). If they
are abstractable, then a new transitive relationship is
directly added between Expense and Payment. It is not
necessary for the search algorithm to explore any affected
path in the LCM. As such, SAC saves abstraction effort by
taking advantage of the previous abstraction results stored
in the ACM.

The third type of event is adding a new relationship to an
LCM (between two existing classes). AbstractionRuleSAC
checks whether this new relationship connects two impor-
tant classes. If neither class is important, then the search
algorithm explores all transitive relationships between the
affected classes and all neighboring important classes
(avoiding any circularity through common classes or
relationships). All transitive relationships from one impor-
tant class are then combined with the transitive relationships
from the other important class. During this combination step,
AbstractionRuleSAC chooses one transitive relationship from
each side and combines/abstracts the two transitive relation-
ships with the newly added relationship. If these three
relationships are abstractable, then AbstractionRuleSAC
creates an instance of AbstractablePathRuleSAC , which, in
turn, creates and maintains a new ACM relationship.

If the newly added relationship connects an important
class, then AbstractionRuleSAC skips the abstraction of
paths starting from that important class. If the newly added
relationship connects two important classes, then no
abstraction is necessary and the newly added relationship
is also added to the ACM. The following pseudocode

summarizes how the algorithm deals with adding a new
relationship in an LCM.

if a change is adding a relationship r between x and y in an

LCM then {

search and abstract all paths starting from x and leading

to an important class and save them in set X;

// skipped if x is an important class

search and abstract all paths starting from y and leading

to an important class and save them in set Y;

// skipped if y is an important class

for any abstractable path m in X

for any abstractable path n in Y

abstract paths m, r and n and update relationships in

ACM if necessary

}

For example, let us consider the LCM in Fig. 1. Assume
that a new association is added between classes Account and
Person (Fig. 7). The search algorithm in AbstractionRuleSAC
initially finds abstractable paths via Person and Account
because both are helper classes. The search algorithm then
finds two more paths from Account. One path is connected
to Payment while the other path is connected to Expense.
Since both Payment and Expense are important classes, the
search stops and the abstracted relationships are stored in
the transitive relationship group for Account. The search
algorithm then continues on the other end of the new
association—the class Person—to explore all paths leading
to important classes there. Since only one relationship exists
and it ends in the important class Guest, there is only one
relationship in the transitive relationship group for Person.
The search algorithm then abstracts the transitive relation-
ships identified by combining the paths from Person with
the paths from Account. This results in two paths. One path
includes class Guest, the generalization, class Person, the
newly added association, class Account, the composition,
and class Payment while the other path connects classes
Guest, the generalization, class Person, the newly added
association, class Account, the composition, and class
Expense. After applying the abstraction productions, the
search algorithm produces two new transitive relationships,
and thus, two new AbstractablePathRuleSAC instances.
AbstractionRuleSAC creates new instances of

AbstractablePathRuleSAC for every new abstractable,
transitive relationship between any two important classes.
Thus, an instance of AbstractablePathRuleSAC represents
an ACM relationship, which is also the root element for
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the instance. For example, based on the new unidirectional
association from class Person to Account shown in Fig. 7, a
new unidirectional association from class Guest to Expense
is created in an ACM. The change impact scope of an
instance of AbstractablePathRuleSAC includes all classes
and relationships that are visited during the abstraction
plus the two traces connecting the two important classes.
A change to any element in the scope, such as the deletion
of a relationship, causes the reevaluation of the instance of
AbstractablePathRuleSAC . With a deletion, the reevaluation
also deletes the corresponding relationship in the ACM.
ComparisonRuleSAC compares the group of relationships

between any two HCM classes with the group of relation-
ships between their ACM counterparts. Just like in IAC
(Rule3IAC), SAC creates an instance of ComparisonRuleSAC
for every high-level class (i.e., the root element). The change
impact scope of a ComparisonRuleSAC instance contains its
HCM class, all the relationships connecting the HCM class,
and all the neighbor classes of the HCM class; the scope also
contains the ACM class (corresponding to the root HCM
class), all the relationships connecting the ACM class, and
the ACM class’ neighbor classes; finally, the scope contains
all trace dependencies of the above-mentioned HCM classes
(see the upper part of Fig. 8, which depicts the change impact
scopes for the four rule instances of ComparisonRuleSAC in
four different numbers). Its scope does not include any LCM
elements (i.e., an LCM change triggers a comparison only if
the ACM changes).

Note that SAC still suffers from the duplicated
comparison problem discussed in IAC. For example,
ComparisonRuleSAC < Hotel > compares the same two

relationships of Hotel as does ComparisonRuleSAC
< Guest > . But, due to the separation of transformation
and comparison, SAC no longer duplicates the expensive
abstraction production (as will be demonstrated in
Section 5.1). However, there is a restriction on the
ordering of the above three rules related to the validation
of the third requirement. Namely, ComparisonRuleSAC
should not be performed until all rule instances of
AbstractionRuleSAC and AbstractablePathRuleSAC have
completed their reevaluation.

4.5 Comparison between IAC and SAC

Both SAC and IAC respond to different types of changes in
different ways. There are in total 13 types of changes and
nine thereof require abstraction in case of IAC, whereas
only five require abstraction in case of SAC. Table 2
summarizes the types of changes. Table 2 has some entries
marked “Possible.” These entries imply that certain types of
changes may or may not require the evaluation of a
ComparisonRuleSAC rule instance because a change to the
LCM may not always cause a change to the ACM. The SAC
approach also compares less than IAC but these additional
savings are largely insignificant for computational scal-
ability because comparison is cheap.

Both IAC and SAC react to model changes and incremen-
tally check the consistency between two class models
(incremental abstraction followed by incremental compar-
ison), but they do so in different ways, which result in
different performances. When a rule instance is reevaluated,
IAC rediscovers the low-level class model because, typically,
consistency checking rules do not maintain state. SAC, on the
other hand, separates abstraction from comparison by
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maintaining an intermediate model—the abstracted class
model (ACM). This intermediate model acts as a barrier,
where abstraction rules create the intermediate model but do
not care about its use and comparison rules use the
intermediate model for consistency checking—though do
not care about how it was created. Each set of rules is
optimized for its own purpose by considering their own
needs only. This is why IAC failed to be efficient because, by
integrating abstraction and comparison, these rules could
only be optimized to the weakest of both needs.

Note that SAC needs to distinguish the types of model
changes in order to make the most use of an ACM. As
such, only certain types of model changes can trigger the
path search (i.e., only when new paths are created). In
contrast, it does not make sense for IAC to distinguish
these types of model changes because IAC does not save
previous abstraction results and it has to reexplore a
portion of the LCM in order to compare the abstraction
results with the HCM. As for the implementation of the
two approaches, the main difference between SAC and IAC
lies in the implementation of requirement 3. Instead of one
rule in IAC, SAC uses three rules—two rules dealing with
changes in the LCM and the corresponding updating of the
ACM, respectively; and one rule for the comparison
between the HCM and the ACM.

In summary, it is important to separate incremental
abstraction from incremental comparison so that transfor-
mation and comparison can react optimally to changes. This
results in smaller change impact scopes. The smaller the
scope, the less likely is the need to reevaluate these rules
with model changes. SAC has much smaller scopes than
IAC, and thus, performs much better. However, how better
does SAC perform in real applications? We will answer this
question in the next section.

5 VALIDATION

In this section, we will compare SAC and IAC in terms of
computational effort, memory consumption, and accuracy.
Remember that IAC represents the traditional approach to
consistency checking, where transformation and comparison

are integrated. We, therefore, evaluated it together with
SAC to better demonstrate the benefits of separating
abstraction from comparison. We evaluated both IAC and
SAC on eight third-party models. We evaluated both
approaches by randomly injecting model changes (see
Table 5) on the models—thus, varying the kinds of model
changes (deletions, additions, and modifications) or the
ratio of important classes to the helper classes (i.e., the most
significant factor affecting the abstractions). In total, over
1,500 model changes were made and 14,000 rule instances
were evaluated on a Dell computer with a 2.0 GHz CPU and
512 MB memory.

The empirical evidence shows that SAC not only is much
faster and more accurate than IAC but also does not exhibit
the scalability problems we saw with IAC, even on large
models. At the same time, SAC does not consume more
memory than IAC.

5.1 Computational Complexity

The following focuses on the computational cost of require-
ment 3 (requirements 1 and 2 are similar for IAC and SAC
and computationally cheap). The implementation of re-
quirement 3 consists of two steps. The first step abstracts the
necessary paths between two important classes in a low-
level class model. The second step compares the abstraction
with the high-level model. For both approaches, abstraction
is performed by starting from a class, exploring every path
until it either reaches an important class or returns due to a
nonabstractable subpath. Table 4 lists the average consis-
tency checking time versus comparison time (in millise-
conds) based on the eight models with different percentages
of important classes (20, 40, 60, and 80 percent randomly
chosen). The empirical data show that both IAC and SAC
spend most of their time on path abstraction; the comparison
time accounts for a very small portion of the total time
(5 percent, on average). Therefore, the abstraction portion
dominates the computational cost of consistency checking.

In the following, we thus focus on the computational
complexity of abstraction and introduce some factors that
help us understand it:
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. ClPE represents the average number of classes
from which we should abstract paths in response
to one event.

. RePCl is the average number of relationships
connected to a class.

. PaLen denotes the average path length from a class
to an important class.

RePClPaLen is the number of paths leading to other
important classes from a class. In practice, once a portion of
a path cannot be abstracted, the abstraction stops exploring
the rest of the path. Since consistency checking is
dominated by the computational cost of abstraction, we
can, thus, say that the cost of consistency checking has the
complexity OðClPE �RePClPaLenÞ as the worst case.

In practice, the cost of consistency checking is much less
than ClPE �RePClPaLen. Table 3 empirically shows the
actual number of paths which can be abstracted versus
the number of paths which are explored. While there is some
fluctuation among the eight models, we found the average
ratio of abstractable paths to all paths to be around 0.2 with
the maximum ratio being 0.44. Intuitively, one would think
that RePCl becomes larger when the size of the model
increases. However, this did not turn out to be true. In fact,

when the size of a model increases, the number of relation-
ships such as associations connecting to a class should not
become larger; otherwise, the structure/implementation of a
class in a software system can become overloaded, which
violates the low coupling principle employed during soft-
ware development [43]. Therefore, in a well-designed
system, such overloaded classes are rarely to be found.

To demonstrate the above idea, we empirically investi-
gated the value of RePCl and found it to be bounded. In Fig. 9,
all classes of the eight models are numbered at the x-axis and
the y-axis represents the number of relationships for each
class. We observed that 80 percent of the classes have
between 1 and 10 relationships with the average number of
relationships being 2.86 (red line). Therefore, we conclude
that the value of RePCl is a moderate number and the value of
RePCl does not increase with the size of a class model—an
important scalability factor.

PaLen is another factor, which impacts the time perfor-
mance of IAC and SAC. During class model refinement, the
helper classes are typically added to the LCM to refine the
relationship between two HCM classes. So, the path between
a helper class and an important class is always shorter than
the path between two important classes. In other words,
PaLen is bounded by LenPPa, which is the average length of a
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TABLE 4
Consistency Checking Time and Comparison Time in Milliseconds

TABLE 3
Visited Paths versus Abstractable Paths

TABLE 5
Number of Affected Classes Per Model Change in IAC



path between two important classes. Therefore, the compu-
tational complexity of consistency checking is bounded by
OðClPE �RePClLenPPaÞ. One would again expect that the
value of LenPPa increases with the size of a model. However,
this expectation is once more contrary to the reality. We
investigated LenPPa on the eight models and found that it
depends solely on the percentage of important classes
among LCM classes—the higher the percentage of important
classes, the smaller the value of LenPPa.

To empirically demonstrate the relationship between
LenPPa and the percentage of important classes, we
investigated the values of LenPPa based on 20, 40, 60, and
80 percent important classes in the eight models. Fig. 10
shows that the value of LenPPa is not affected by the size of
a model. Instead, the value of LenPPa depends only on the
percentage of important classes (note that the value of
LenPPa stays constant for a given percentage).

For instance, when there are only 20 percent important
classes in the eight models, the value of LenPPa is, on average,
8.3 but when the percentage of important classes increases to
80 percent, the value of LenPPa is only 1.7. The value of
LenPPa decreases with the percentage of important classes.

Above, we have shown that the value of LenPPa is
dependent on the structure of a class model instead of its
size and RePCl is bounded within a small range. Moreover,
these two factors stay the same for both IAC and SAC for a
given model. However, the value of ClPE shows how IAC
and SAC work differently. Since each abstraction computa-
tion starts from an LCM class to find all abstractable paths

leading to all its neighbor important classes, the number of
LCM classes affected by a change decides how long the
abstraction computation will take. In order to get the
shortest abstraction time, we should have the smallest
number of classes affected by an event. IAC has more rule
instances affected by any change event because the large
change impact scopes of Rule3IAC instances have a high
probability of overlap. Consequently, the number of
affected LCM classes in IAC is normally greater than that
of SAC. Table 5 shows that, in the IAC approach, the
average number of classes affected by a change event is
between 1.7 and 7.9. Next, we illustrate that the correspond-
ing value of ClPE in SAC is not only smaller but also the
smallest for all types of events. Thus, we conclude that SAC
is an optimal solution considering that the values of RePCl

and LenPPa are not affected by the model size.
Recall that when events such as deleting a trace or

relationship happen, no abstraction needs to be performed
in a low-level class model. Consequently, the value of ClPE

is 0, which is optimal. Only in the cases of adding a trace or
a relationship, the value of ClPE could be nonzero. We
discuss the two cases separately below. In the case of
adding a trace, if the trace is added to an already important
class Y (Fig. 11a), then it is not necessary to find any
transitive relationships because the LCM class Y refines two
HCM classes that violates the requirement Rule1SAC . As a
result, the value of ClPE is 0. If a new trace is added to the
helper class X as shown in Fig. 11b, we should abstract all
paths from this new important class to all other important
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Fig. 10. LenPPa decreases with the percentage of important classes.

Fig. 9. RePCl is bounded.



classes (i.e., classes A and B in this case). Thus, the value of
ClPE is 1.

When adding a relationship, there are several scenarios
that affect the value of ClPE. If two classes connected by a
new relationship are important, then the search for a new
transitive relationship is not necessary since no new paths
passing the newly added relationship can be created. The
new relationship is simply added to the ACM and the value
of ClPE is 0. If both classes connected by a new relationship
are helper classes, then there could exist transitive relation-
ships through the helper classes. For example, Fig. 11c
shows such a new relationship added between helper
classes X and Y. In this situation, some transitive relation-
ships between important classes A and B might be created
via X and Y. So, the abstraction algorithm should start from
X and Y, respectively, to find new paths. Thus, the value of
ClPE is 2, which is optimal. As a special case of the above
scenario, if only one of the two classes is a helper class, the
abstraction algorithm searches for new paths only starting
from the single helper class. Compared to Table 5, it is
obvious that the value of ClPE for SAC is much smaller
than the corresponding value for IAC. The maximum
number of affected classes in SAC is 2, which is the smallest
possible number considering all types of events. Fig. 12
shows the time performance for both IAC and SAC in
milliseconds. We see that SAC outperforms IAC by about
an order of magnitude.

In summary, the value of RePCl is typically bounded
within a small range and the value of LenPPa is only related

to the percentage of important classes in a low-level class
model. Consequently, the values of RePCl and LenPPa stay
the same for both IAC and SAC for a given model and there
is no scalability problem in terms of the model size. The
only important scalability factor is ClPE. The smaller the
value for ClPE, the more efficient the abstraction.

5.2 Memory Cost

While SAC improves time performance, it actually con-
sumes less memory space than IAC and the memory
consumption of IAC rises even more sharply than that of
SAC. This observation was contrary to our intuition at first
since SAC has to maintain an intermediate model with
extra memory consumption. The memory cost of IAC
(MemoryIAC) consists of two parts: the memory used to
store all rule instances and all scope elements contained in
all the rule instances’ change impact scopes. The memory
cost of SAC (MemorySAC) consists of the same two parts as
IAC, plus the memory space allocated for the intermediate
model ACM. Since each rule instance is represented by its
type such as Rule2<IAC> and a scope element is an element
such as a class or a relationship in a class diagram, each rule
instance and scope consume roughly the same unit in
memory. So, in the following, we only consider the number
of rule instances and the number all scope elements
contained in them. While the intermediate model adds to
the memory consumption of SAC, this cost is compensated
by the significantly smaller scope sizes among SAC rules as
compared to IAC. Fig. 13 illustrates the memory gain on the
eight sample models with 20, 40, 60, and 80 percent
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Fig. 12. Time performance of IAC and SAC.

Fig. 11. How paths are explored in SAC for three different cases: (a) new trace is added to a previously important class; (b) new trace is added to a
previous helper class; and (c) new relationship is added between helper classes.



important classes. The memory gain is given by (IAC’s
memory—SAC’s memory)/SAC’s memory * 100, which
represents the memory difference between IAC and SAC.
In this figure, the x-axis shows each model in four
percentages of important classes and the y-axis indicates
the percentage of the memory gain between IAC and SAC
for each percentage of important classes. We see that the
percentages of memory gain for the eight models increase
proportionally with the model sizes but decrease with the
percentages of important classes.

5.3 Accuracy

We previously discussed that the abstraction technique errs
in favor of abstracting too much instead of too little (i.e., false
positives). We previously empirically evaluated the correct-
ness of the abstraction results [12] and found the false
positive rate to be less than 4 percent (100 percent sensitivity
and 99.3 percent specificity). We also demonstrated that it
was an extremely time-consuming task to infer abstract
relationships among all class combinations and potential
paths. That is, of the 21,024 potential dependencies among all
170 abstract classes of all 18 experiments in [12], there were
only 2,374 paths and 258 transitive relationships—100-fold
reduction. Both IAC and SAC implemented the same
abstraction technique and it was expected that both
approaches would do equally well in terms of the usefulness
of the abstraction results. This was partially wrong. Not only
was SAC computationally faster but it also produced fewer
false positives as is explained next.

The existence of the 4 percent false positive rate implies
the possibility of erroneous design feedback during refine-
ment. In turn, 4 percent of the inconsistencies reported
should be in fact wrong. We, thus, investigated how many
abstract relationships were derived by both SAC and IAC.
We discussed above that IAC unnecessarily reinvestigated
many more paths than SAC. This should not have come as a
surprise given that SAC reused abstraction results instead
of reabstracting everything. We found that IAC explored,
on average, 135.9 paths per change while the SAC explored
only 13.8 (based on the same eight case studies and
different percentages of important classes). Among the
135.9 paths explored by the IAC, 22.5 of them resulted in
abstract relationships (i.e., not every path resulted in an

abstract relationship). The SAC, on the other hand, only
produced 2.4 abstract relationships, on average. Since we
know of the existence of the 4 percent false positive rate, we
can infer that IAC produced 9.4 times more false positives
than SAC. Thus, while both IAC and SAC suffer from the
4 percent false positive rate, less abstraction (as in SAC)
implies that fewer inconsistencies are detected through false
abstraction results.

5.4 Tool Complexity

We implemented both IAC and SAC and integrated them
with the design tool IBM Rational Rose. SAC implements
more rules (transformation and comparison) than IAC
(comparison only). In terms of implementation effort, it
may thus appear that SAC rules were harder to implement
than IAC rules. This initial impression is wrong because the
separation of transformation and comparison made SAC
rules easier to write and validate compared to IAC rules. In
terms of implementation size, SAC consists of 3.1 KLOC
and IAC of 2.6 KLOC—a rather small difference in size
caused primarily by the larger number of rules. It must be
noted that our tools are prototypes and were created solely
to support the empirical evaluation discussed in this paper.
It is our goal to mature the SAC tool and transition it to
industry. We have had some success with the abstraction
technology already. It should also be noted that the SAC
and IAC rules were handcoded. For the comparison
between IAC and SAC, this fact is irrelevant. However,
for ease of use and transitioning to industry, we plan on
extending SAC to provide a better, flexible way for defining
transformation and comparison rules.

6 CONCLUSIONS

This paper investigated the problem of instant consistency
checking between two class models at different levels of
abstraction. While traditional approaches to consistency
checking typically leveraged from reasonably scalable
consistency rules, we found that the consistency checking
of class structures was too expensive for instant use. Our
original approach, called IAC, implemented consistency
rules in the “traditional way” as is often seen in the literature.
IAC uses self-contained rules to express the entirety of a

SHEN ET AL.: AN EFFICIENT AND SCALABLE APPROACH TO CORRECT CLASS MODEL REFINEMENT 531
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consistency concern—containing instructions for the retrie-
val of all relevant information, their transformation if
necessary, and comparison. This integrated transformation
and comparison approach to consistency checking works
well for many kinds of consistency rules, however, it does
not scale where transformation is a computationally ex-
pensive task.

Rather than proposing tweaks to deal with this problem,
we further investigated this issue and discovered that
transformation (abstraction) was fundamentally differently
affected by model changes than comparison—and thus,
their handling was impaired by integrating them into single
rules. We, therefore, developed an alternative approach,
called SAC, which separated transformation from compar-
ison. SAC was not only an order of magnitude faster than
IAC but also produced fewer false positives and consumed
less memory. Our solution, to separate abstraction from
comparison, was thus as simple as effective. This paper
contributed a scalable and efficient approach to the correct
refinement of class models. Our approach, however, is only
useful if engineers desire to maintain high and low-level
class models separately. The benefit of instant feedback is
marginalized if the refinement happens once only and the
high-level model is discarded thereafter (i.e., a simple batch
consistency mechanism takes longer to compute but if done
once only, then this cost is not very significant).

It is worthwhile noting that our approach requires
traceability between high- and low-level class models as
input. Traceability is currently provided manually. Future
work could partially automate its generation analogous to
the idea of minimal inconsistency (i.e., what traceability
would lead to the least number of inconsistencies). However,
the need for traceability is not particular to our approach but
generally necessary in cases where models are maintained
consistently and separately. Therefore, both IAC and SAC
require this input and the explicit need for traceability does
not weaken the many benefits of SAC over IAC.

We believe that the separation of transformation and
comparison as a paradigm could be applied in other
situations, where consistency checking suffers from similar
performance related issues.
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